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HIGHLIGHTS 

Diesel trucks are the dominant powertrain in the heavy-duty vehicle sector today, but new 
alternatives are available. This analysis compares the greenhouse gas emissions and health 
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make-up of the electric grid. However, across the country an electric truck fueled by a clean 
grid remains the cleanest alternative in all applications studied. 
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1 Introduction 

Trucks powered by fossil fuel combustion directly emit pollution from the tailpipe. However, 

in thinking through the total impact of these vehicles on the public, it is important to also 

consider the impacts of the fossil fuel infrastructure supporting these vehicles—there are 

emissions associated with the refining of petroleum into gasoline or diesel fuels, and there are 

emissions also associated with the obtaining that petroleum feedstock in the first place.  

Electric trucks do not directly emit any tailpipe pollution, but there are emissions associated 

with the production of electricity needed to power these trucks. There are also emissions 

associated with the provision of fuel for the electricity grid.  

In order to provide the most apples-to-apples comparison for the usage phase of these vehicles 

(i.e. well-to-wheels),1 emissions and impacts from all three phases of the lifecycle are 

considered, in total: 1) feedstock; 2) fuel; and 3) use. For upstream emissions from fuel and 

feedstock (i.e. tank-to-wheels), this data is generally obtained from the latest version of 

Argonne National Lab’s (ANL’s) “Greenhouse gases, Regulated Emissions, and Energy use in 

Technologies” (GREET) Model (2022) (Wang et al. 2022). Direct emissions from use are 

further discussed below and were taken based on modeling largely consistent with EPA’s 

MOVES model (US EPA 2021), though with additional considerations. In assessing the impact 

of these technologies, we consider emissions produced over the expected lifetime usage of the 

vehicle, which includes degradation of the emissions controls over time.  

The Heavy-duty Truck Market Is Diverse 

Heavy-duty trucks come in a range of vehicle sizes and weights and undergo a wide range of 

operation. To capture typical behaviors of interest, we consider a representative list of vehicle 

classes and duty cycles (Table 1). 

Duty Cycles Cover a Range of Capability and Usage 

To best match real-world performance, we relied almost entirely on representative duty cycles 

from the National Renewable Energy Lab (NREL), primarily that collected as part of its 

FleetDNA program, which uses real-world data to generate a representative test cycle (NREL 

2022). There are two exceptions, one for school buses and another for refuse trucks. While 

FleetDNA data is available for these cycles, there is not a single representative duty cycle 

published, so we designed our own to best match the available test data by combining the 

representative cycles in ratios that matched the duty cycle statistics of the Fleet DNA dataset. 

 
1 This analysis is limited to consideration of the usage of the vehicles and does not include emissions 
associated to manufacturing or end-of-life. Even for electric vehicles, the usage phase is the dominant source 
of lifetime greenhouse gas emissions (e.g., Iyer, Kelly, and Elgowainy 2023 shows usage emissions five times 
larger than manufacturing emissions for a long-haul truck, even when considering a battery-pack 
replacement). Additionally, the literature to-date has focused almost exclusively on non-greenhouse gas 
emissions, excluding a core part of this analysis (lifetime public health impacts). 
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Table 1. This analysis covers a range of heavy-duty vehicle classes, types, and duty cycle 

Vehicle Class Vehicle Type Duty Cycle 

Class 4 

Class 6 

Class 6 

Class 8 

Class 8 

Class 8 

Class 8 

Class 8 
 

To best match real-world performance, we have relied on duty cycle data collected in the real world by 
NREL, primarily through its FleetDNA program. 

In the case of school buses, this combined three representative cycles identified by NREL, the 

Orange County Transit Bus Cycle (OCTA), CARB Heavy-heavy Duty Transient Combined 

Cycle (HHDDT), and the Rowan University Composite School Bus Cycle (RUCSBC) (Duran 

and Walkowicz 2013). For the refuse truck, we combined two different refuse truck cycles for 

different refuse types, the NREL Miami-Dade Refuse Cycle (developed by NREL from 

automated side-loader refuse truck data from vehicles operated by Public Works and Waste 

Management in Miami-Dade County, Florida) and the NREL Neighborhood Refuse Cycle 

(developed with EPA as part of the Smartway program, representing automated side-loader 

refuse truck operation) with the Braunschweig city driving cycle, a low-speed transient 

driving schedule with frequent stops. Zero-velocity time at the beginning and end of the 

representative cycles was eliminated, and then an integer number of cycles was combined to 

match NREL FleetDNA speed bin data.  Additional idle time between the randomly ordered 

cycles was added as needed to match the idle share in the FleetDNA data. Because the 

representative data cycles did not contain any assumed changes in grade and lacked specificity 

on engine on/off time, we applied the EPA grade profile used in the Phase 2 Greenhouse Gas 

Regulations (in whole number steps to ensure symmetric uphill/downhill profile) and 

assumed key-off park after 90 seconds of idle. These aggregate test cycles are shown in Figure 

1 and Figure 2. A comparison of the UCS-derived cycles and the FleetDNA data is shown in 

Table 2 and Figure 3. 

As can be seen in the data, these assembled test cycles largely match key test cycle metrics, 

including average speed, aerodynamic speed, characteristic acceleration, and kinetic 

intensity.2 One notable disparity occurs for the stopping characteristics of the refuse cycle, 

where the UCS aggregate test cycle clearly shows a greater frequency of stops than the Fleet 

DNA dataset. However, this is limited by our use of entire test cycles rather than microtrips, 

and both the Miami-Dade and Neighborhood test cycles have stopping frequencies greater 

than the FleetDNA average (10.3/1.33 and 10.5/1.96 stops per mile/minute, respectively). 

 
2 These metrics are described more fully in O’Keefe et al. 2007. 
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Figure 1. UCS-generated Heavy-duty Test Cycle for a Refuse Truck 

 

By combining established refuse truck cycles, we were able to match many of the characteristics of the 
NREL FleetDNA data for refuse trucks. However, because these cycles had more frequent stops than 
the FleetDNA dataset, the UCS test cycle shown above has more frequent stop-start behavior. 
SOURCE: UCS analysis.  

 

Figure 2. UCS-generated Heavy-duty Test Cycle for a School Bus 

 

By combining established bus cycles, we were able to match many of the characteristics of the NREL 
FleetDNA data for school buses. However, because these cycles had more frequent stops than the 
FleetDNA dataset, the UCS test cycle shown above has slightly more frequent stop-start behavior. 
SOURCE: UCS analysis.  

 

Table 2. UCS-generated Duty Cycles Compare Favorably to NREL FleetDNA Data 

Cycle Characteristic 
School Bus Refuse Truck 

UCS FleetDNA UCS FleetDNA 

Characteristic Acceleration (ft/s2) 

Aerodynamic Speed (ft/s) 

Kinetic Intensity (1/mile) 

Average Driving Speed (mph) 

Stops per Mile 

Stops per Minute 
 

Utilizing a combination of vocational duty cycles allowed us to match well NREL-collected data on 
school buses and refuse trucks.  
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Figure 3. Speed Bin Data for UCS Data Cycles Agrees with NREL-collected Real-world Data 

 

A profile of cumulative speed bin data for school buses and refuse trucks collected by the National 
Renewable Energy Lab (NREL) and the duty cycle generated by UCS for use in this report affirm the 
representativeness of the UCS duty cycles for these vocations. 

While it might be expected that more frequent stoppage results in greater kinetic intensity for 

the cycle, that does not appear to be the case. 

Unlike the other vehicles listed in Table 1, refuse trucks spend a significant amount of fuel use 

through power-take-off (PTO), in this case while the vehicle is compacting trash. Real-world 

data shows that a significant amount of operation time is spent at idle, during which the PTO 

is operational, and one study showed that 30 percent of fuel energy went towards operation of 

the compactor (Wysocki et al. 2018). However, due to limited data and the use of GEM 

(detailed below) to assess fuel consumption, this analysis considers fuel consumption rates 

solely based on the fuel use from the drive cycle.  

Vehicles are Designed with Different Usage in Mind 

In order to have a systemic approach to the operational characteristics of the different 

vehicles, we rely on modeling supporting EPA and NHTSA’s Phase 2 Greenhouse Gas 

Emissions and Fuel Economy Standards (US EPA 2022a). Vehicle characteristics were 

determined by the final stringency required under those regulations, based on a regulatory 

category corresponding to each vehicle type (Table 3). Because the final regulatory category is 

based on an average fleet mix of characteristics (i.e., in most cases stringency was not 

predicated on a single technology package but on an assumed mix of technology packages), a 

given vehicle’s technology package was determined based on the mix of technology features 

needed to most closely match the average characteristics of the vehicle class. To the extent 

there are lingering errors, those differences were assessed in a way to ensure that the fuel 

economy of the diesel vehicle would match or exceed that required by the respective 

regulatory cycle. 
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Both electric trucks and combustion engine-powered trucks are likely to improve in efficiency 

in the coming years. New trucks are required to meet fuel economy standards through at least 

2029 and greenhouse gas emissions standards through 2032.3 When originally setting 

standards through the 2029 model year, NHTSA and EPA set standards predicated 

predominantly on the increased efficiency of combustion engine-powered vehicles. The level 

of ambition of those targets based on EPA’s judgment was reiterated in a recent rulemaking, 

where EPA stressed that it had “set the existing [heavy-duty (HD) greenhouse gas (GHG)] 

Phase 2 standards at levels that would require all [emphasis added] conventional vehicles to 

install varying combinations of emission-control technologies…. The HD GHG Phase 2 

standards were based on adoption rates for technologies in technology packages that EPA 

regards as appropriate under [the Clean Air Act] section 202(a) for the reasons given in the HD 

GHG Phase 2 rulemaking” (87 FR 17440-1).  

A number of new technologies have been developed since the Phase 2 rules were finalized, 

including some like cylinder deactivation which could aid manufacturers in compliance with 

new NOX emissions standards as well as reduce fuel use and greenhouse gas emissions.4 One 

study shows as much as a one-third further reduction possible in fuel use from conventional 

trucks by 2035 (Buysse et al. 2021). However, a large share of these reductions come from 

advancements in technology that would be directly applicable to electric truck efficiency as 

well (tires, axle efficiency, aero, weight reduction). Because such vehicle-level improvements 

would affect both classes of vehicle in this study but have no known schedule of likely 

deployment and were not considered when setting the standards, we have not assumed any 

improvement beyond what the Phase 2 standards require. For trucks powered by a 

combustion engine, this means a combination of vehicle-level improvements outlined in the 

compliance modeling and a 2027-compliant heavy-duty engine. 

 
3 81 FR 73478-4274 (2016); 89 FR 29440-831 (2024). 
4 88 FR 4296-4718 (2023). 

Table 3. UCS Analysis Covers a Range of EPA Regulatory Classes and Applications 

Vehicle Class Vehicle Type EPA Regulatory Class 

Class 4 

Class 6 

Class 6 

Class 8 

Class 8 

Class 8 

Class 8 

Class 8 
 

EPA regulatory classes align well with the vehicle categories studied in this analysis, with little overlap.  

Note: LHD = Light Heavy-duty; MHD = Medium Heavy-duty 
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Electric trucks are assumed to have the same vehicle characteristics as conventional trucks,5 

with no further improvements in efficiency over time. This conservative assumption was 

chosen to account for the uncertainty in how future improvements to batteries and power 

electronics would manifest themselves in future generations of electric trucks—for example, 

improvements in battery cell density may be used to increase the vehicle’s range rather than 

reduce weight, which could then be used to improve freight efficiency. In the case of long-haul 

electric trucks, it is likely that all such improvements would be applied to increasing the range 

of the vehicle—while long-haul is a shrinking slice of the truck market (Mihelic and Roeth 

2019), a major reason for the lack of availability of a long-range electric truck is the impact of 

weight on payload using today’s current battery technology, though manufacturers have 

already increased range on the few Class 8 electric tractors on the market and will likely 

continue to do so (Volvo Trucks 2022). At the same time, manufacturers are already deploying 

some advanced strategies in aerodynamics on the current generation of vehicle (like the Tesla 

semi [AirShaper 2022]) and high-volume EVs from major OEMs are being built based on post-

MY2021 platforms,6 so it is necessary to distinguish between first-generation (e.g., MY2021) 

and later (MY2027+) models. We have similarly assumed no post-MY2027 differences in 

vehicle characteristics for other alternative fuel vehicles. 

  

 
5 The GEM model used to assess fuel consumption considers a fixed gross vehicle weight for a given vehicle 
class. While there may be some differences in unladen weight for some classes of vehicle, trucks with 
alternative powertrains are granted a 1-ton allowance that compensates for some of this. Additionally, for 
tractor-trailers, over two-thirds of loads “cube out”, which would not yield any penalty related to weight, 
and our methodology for assessing the efficiency of trucks inherently considers like-for-like load. 
6 “The VNL platform was designed to be used in Volvo’s future trucks powered by alternative power systems, 
and while the truck has yet to make it into the hands of owners—deliveries begin in October—Volvo has 
already announced the next power system to be used in the all-new VNL.” (Brasher 2024). 
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2 Modeling Greenhouse Gas 
Emissions and Fuel Usage 

Greenhouse gas emissions for conventional vehicles are directly related to the fuel used 

throughout the duty cycle of those vehicles. Gasoline and diesel are widely distributed 

commodities, and the entire nation has adopted the same fuel standards (whether that be Tier 

3-compliant gasoline or ultra-low sulfur diesel), so a single national average fuel energy 

density and upstream emissions profile was chosen. While natural gas and propane are 

regulated in a different manner, the extraction, refining, and distribution are similarly national 

in scale and are therefore assumed to lack regionality when it comes to the upstream impacts 

of the vehicles. 

In contrast, greenhouse gas emissions for electric trucks are dependent upon the electric grid 

powering them, which makes them much more geographically dependent. The upstream 

emissions associated with the electric grid are discussed in much greater detail later in the 

report. 

Below, the methodology to assess the efficiency of the two types of vehicles is described in 

greater detail. 

UCS Used an EPA Model to Project Diesel-powered Truck Improvements 

Given the wide range of operating conditions, it is critical to establish a consistent framework 

for assessing the expected fuel usage for diesel-powered trucks. In this case, we utilize the 

latest version (Phase 2 v4.0) of the Greenhouse gas Emissions Model (GEM) designed by EPA 

to assess the appropriateness of its greenhouse gas emissions program and measure 

compliance with that program. 

Phase 2 GEM is a physics-based simulation of a heavy-duty truck, modeled in MATLAB using 

Simulink with Stateflow. There are four submodules governing the simulation: 1) Ambient 

subsystem, which establishes road grade, temperature, etc.; 2) Driver subsystem, which is a 

time-based controlling module that attempts to match a given duty cycle, with some look-

ahead; 3) Powertrain subsystem, which includes the engine, transmission, electric accessories, 

and driveline; and 4) Vehicle subsystem, which consists of the chassis and relevant physical 

forces on the vehicle related to aerodynamic drag, rolling resistance, etc.  

Rather than simulating the fuel used by the vehicles through the regulatory cycles, we used the 

representative duty cycles outlined above to assess fuel usage, including regulatory payload, 

tires, etc. The fuel economy for each vehicle based on features needed for each regulatory class 

to meet the 2021 and 2027 GHG standards is shown in Table 4. Table 4 includes both the GEM 

result for the modeled individual vehicle as well as the EPA requirements for that vehicle, 

which are based on fleet average requirements. 
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GEM uses an assumption of ultra-low-sulfur diesel (ULSD) certification fuel, and all fuel 

economies are characterized assuming the energy content of a 100-percent petroleum-based 

ULSD. However, in the real world, trucks operate on a range of fuels meeting the ULSD 

specification, including mixtures containing biodiesel and renewable diesel (RD). According to 

the latest projections of the Energy Information Administration’s (EIA’s) Annual Energy 

Outlook (AEO) (US EIA 2023), just under 10 percent of the on-road diesel energy comes from 

renewable sources, and that is projected to see only a modest increase through 2050.7 Using 

the VMT-weighting approach described in detail elsewhere in the methodology, it is expected 

that 10.2 percent of the energy required for a model year 2035 HDD truck would come from 

biofuels, compared to 10.0 percent for a model year 2023 HDD truck. Similarly, there is only a 

small shift towards greater usage of RD (from 6.6 percent to 7.0 percent) for these vehicles 

over their respective lifetimes. Averaging fuel use projected by EIA over the 2023-2050 time 

period, the AEO dataset projects a value nearly identical with that of the 2035 vehicle (10.2 

percent of energy coming from bio-based diesel, with just 3.2 percent coming from biodiesel), 

so we utilize these shares for all HDD trucks given the minimal variation. 

 
7 See Table 36 (Transportation Sector Energy Use by Fuel Type Within a Mode) and Table 17 (Renewable 
Energy Consumption by Sector and Source).  

Table 4. UCS Analysis Covers a Range of EPA Regulatory Classes and Applications 

Vehicle Type Regulatory Class 

Representative 
Fuel Economy 
(mpg-diesel) 

GEM-modeled 
Regulatory 
Cycle Result 
(g CO2/ton-mi.) 

EPA Regulatory 
Requirement 
(g CO2/ton-mi.) 

2021 2027 2021 2027 2021 2027 

Delivery Van 

Delivery Truck 

School Bus 

Refuse Truck 

Tractor (Drayage) 

Tractor (Regional) 

Tractor (Line-Haul) 

Transit Bus 
 

Despite matching well the greenhouse gas emissions standards on the test cycle, as simulated in GEM, 
the fuel economy for diesel-powered trucks remains quite low through 2027 in the identified 
applications, owing to intense duty cycles. 

*Note:  Because the simplified GEM model used for compliance utilizes a 2027-model year engine map 
rather than the engine map associated with the vehicle, the regulatory standards for the custom chassis 
vehicles for 2021 are compared to the vocational standard (e.g., MHD-U) rather than the custom 
chassis standard for 2021-2026. 
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To assess the upstream greenhouse gas emissions impact from diesel trucks, we assume that 

88.8 percent of the energy needed comes from ULSD, 3.2 percent from biodiesel, and the 

remainder from RD. The upstream impacts from bio-based diesel are based on the feedstock 

used, so we assign the respective feedstocks for biodiesel and RD according to the 2023 data 

from a recent analysis of 2011-2023 biodiesel and RD feedstocks (Gerveni et al. 2024).8 The 

final emissions values are then weighted accordingly, as modeled by GREET. On average, total 

greenhouse gas emissions for the bio-based diesel considered are 74 percent lower than that of 

100 percent petroleum-based ULSD, leading to a 7.4 percent overall reduction for the assumed 

ULSD mix. 

Though most renewable diesel is used in California as a result of local state policy (the low 

carbon fuel standard, or LCFS) (Figure 2 in Gerveni et al. 2023), we have not assumed any 

regional variation in emissions from diesel trucks, consistent with our approach to other fossil 

fuels.  

Direct emissions of CO2 utilize the respective factors from the GREET model. However, 

methane (CH4) emissions are regulated by EPA both directly and as part of the tailpipe 

regulations of hydrocarbons, which are vehicle-dependent, and so therefore these are 

incorporated into the total greenhouse gas emissions via 100-year global warming potentials 

found in IPCC AR6 (see footnote 17 and surrounding text). N2O emissions were excluded for 

combustion vehicles, though these represent less than 1 percent of direct tailpipe GHG 

emissions. 

Electric Vehicles Are More Energy-Efficient Than Diesel Trucks 

More than half of the energy contained in diesel fuel is wasted in the combustion process of a 

diesel truck (figure 5 in DOE 2013). In contrast, electric motors can be 90 percent efficient or 

more (figure 8.E.3 in DOE 2015). Electrification thus presents a tremendous opportunity for 

improving the efficiency of the trucking sector.  

Efficiency gains can be further improved in duty cycles where there is significant braking, 

since electric trucks can use regenerative braking to limit energy wasted in the form of heat. 

Clearly such an opportunity varies widely among applications, and previous studies on hybrid-

electric trucks showed that the relative advantages could be characterized exclusively by a few 

parameters specific to a given duty cycle (O’Keefe et al. 2007). Below, we walk through a 

simple model for the advantage of fully electric trucks. 

Given the relatively small (but growing!) number of electric trucks on the road today, there is 

scant data on real-world efficiencies. Early data from the California Air Resources Board 

showed that the efficiency improvement of electric trucks over their diesel counterparts could 

largely be considered as to the average speed of their duty cycle (CARB 2018). Additional 

modeling data compiled by two different national labs can help fill in some of the gaps in the 

CARB 2018 dataset (Liu et al. 2021, Hunter et al. 2021), which is especially important for high 

speed applications like long-haul trucks, for which there is limited data. 

 
8 This analysis is in relative agreement with the AEO values, with RD feedstocks representing 63 percent of 
the bio-based diesel market, by weight, in 2023. 
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Figure 4. The Efficiency Improvement for Electric Trucks Is Dependent Upon Average Speed 

 

Real-world and test-lab data provided by CARB (dark blue circles) plus more recent simulations by 
national laboratories (light blue squares) show that electric trucks are significantly more efficient than 
their diesel equivalent, at any speed. Fitting the data on a log-log plot finds a strong correlation which 
can then be used to interpolate to different duty cycles (black line, with dotted lines representing 95-
percent confidence intervals). CARB’s original fit (green line) is shown for reference. 

SOURCES: CARB 2018, Liu et al. 2021, Hunter et al. 2021, UCS Analysis 

Figure 4 shows that the new simulation data is largely consistent with CARB’s dataset. We fit 

the data to a general exponential relationship with average duty cycle speed, consistent with 

CARB’s formulation. While at the lowest speeds, our estimate is up to 36 percent more 

efficient than CARB’s estimate, at high speeds we see a significant reduction compared to 

CARB’s data. CARB’s original formulation lies near the maximum EER of our 95 percent 

confidence bars at high speed, and for the duty cycles considered in this analysis, the average 

speeds are in the realm where our estimate of the EER is equal to or below that of CARB, 

making our analysis more conservative. 

To date, much of what little systematic data is available on the efficiency of electric trucks 

looks at the opportunity for electric trucks in the long-haul sector, which can help provide a 

comparative sample of our electric truck assumptions. Pulling the data from the sources cited 

in a recent literature review (Basma et al. 2021), we find that CARB’s data is at the upper 

maximum in EER, with the data indicating an average EER = 1.95-2.24, quite consistent with 

our fit at high speeds (1.6-2.7). 
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A comparison of the derived electric vehicle efficiencies for the vehicles of interest and 

available real-world data affirms this methodology (Table 5). Fleet demonstrations conducted 

by the North American Council for Freight Efficiency (NACFE) find that Class 8 diesel tractors 

can achieve at least 8.0 mpg, with a subset achieving as high as 8.7 mpg (Mihelic et al. 2020). A 

recent analysis of fleets running electric trucks showed an average efficiency of about 2 

kWh/mi (Mihelic et al. 2022). Similarly, NREL data on efficiency from transit buses, school 

buses, and delivery trucks identify similar efficiencies of electric trucks in those operations.  

Non-diesel Combustion Vehicles Offer a Less Efficient Alternative 

While diesel engines have the largest market share among heavy-duty vehicles, there are 

spark-ignition (SI) gasoline, propane, and natural gas engines available. Hydrogen combustion 

is currently a SI technology in development and on the road in demonstration projects.9  

 
9 For an overview of some active projects, see presentations from the Clean Truck Partnership Workshop on 
the Role of Hydrogen in California’s Trucks held by the California Air Resources Board online, November 28, 
2023 (Alger 2023, Hergart and Gerty 2023, Kreso 2023, and Bartel 2023).  

Table 5. Estimates of EV Efficiency Compared to Diesel Trucks Agrees with Real-world Data 

Vehicle Type 

Simulated Data (MY2021 EV) Real-world Data 

Diesel 
(mpg) 

Electric 
(kWh/mi) 

EER Diesel 
(mpg) 

Electric 
(kWh/mi) 

EER 

Delivery Van 

Delivery Truck 

School Bus 

Refuse Truck 

Tractor (Drayage) 

Tractor (Regional) 

Tractor (Line-Haul) 

Transit Bus 
 

On an energy basis, electric trucks can be more than 4 times as efficient as their diesel counterparts, 
particularly on the most intense duty cycles. Our modeling is consistent with the limited data on real-
world applications—in fact, if anything our assumption about the energy efficiency (kWh per mile) of 
these trucks undersells the performance of electric trucks. 

*Note: Transit bus data mpg is based on diesel equivalency of compressed natural gas buses run on the 
same routes. EER and energy efficiency includes an assumption of a 90-percent charger efficiency. 

SOURCES: Jeffers and Eudy 2021 (transit bus), Kelly et al. 2015 (delivery truck), Kelly and Prohaska 
2017 (school bus), LeCroy and Dobbelaere 2024 (delivery van, delivery truck, regional tractor, school 
bus, transit bus), Mihelic et al. 2020 (regional and line-haul), and Mihelic et al. 2022 (regional and line-
haul). 
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EPA has not set through Phase 2 or its Phase 3 regulations any new requirements for SI 

engines. Therefore, this analysis does not assume any improvements in efficiency for gasoline, 

propane, or natural gas engines compared to current technology. In the case of hydrogen 

combustion, there is ongoing work to look at in-cylinder injection of hydrogen, which is 

expected to yield both increases in efficiency and increases in particulate matter emissions 

from the engine (Thawko and Tartakovsky 2022). Because this technology is touted as a direct 

diesel replacement in “fuel agnostic” engines (Nebergall 2023), and because there is otherwise 

limited information on its efficiency, we have assumed that such engines will be comparable to 

diesel engine efficiency on an energy-equivalent basis. This could lead to as much as an 33% 

overestimate in efficiency based on modeling of other SI engines (described below). 

For propane, gasoline, and natural gas engines, we have used GEM to model the performance 

of these vehicles, based on a modern natural gas engine (Seo et al. 2020). Using EPA’s 

ALPHA/GEM engine resizing methods within MATLAB, the engine was resized to produce 

comparable power to the diesel equivalent engines. A comparison of these four representative 

SI engines and the torque and power characteristics of some current offerings are shown in 

Table 6. For an additional comparison, we also include the light heavy-duty (LHD) engine 

included with the GEM model as the default vocational engine, based on the Ford Triton 6.8L 

V10, which features a substantially different torque curve owing to it being naturally 

aspirated.10 

 
10 Because the Ford Triton 6.8L V10 differs so substantially from other spark-ignition engines, it was found 
to be much less scaleable for the large number of applications studied and was frequently, even when resized, 
unable to complete a duty cycle when modeled in GEM or was found to be substantially less efficient, even 
for applications like school buses where the engine is known to be deployed today. 

Table 6. UCS Spark-ignition Engines Are Comparable to Those Available on the Market 

Engine Description Max Torque (@ Speed) Max Power (@ Speed) 

EPA SI Engine (300)a 

Cummins B6.7N (200)b 

Modeled LHD Engine 

Cummins L9N (280)c 

Modeled MHD Engine 

Cummins L9N (320)c 

Modeled HHD Vocational Engine 

Cummins X15N (500)d 

Modeled HHD Tractor Engine 
 

Spark-ignition (SI) engines simulated in GEM cover a range of operating behavior consistent with the 
current generation of heavy-duty SI engines on the market. UCS engines have a more similar torque 
and power curve than that of EPA, which is naturally aspirated. 

SOURCES: a) US EPA 2022a, b) Cummins Westport 2018a, c) Cummins Westport 2018b, d) Cummins 
Inc. 2022. 
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While there may be some small differences based on the particular characteristics of the fuel, 

it is assumed that all three fuels have identical combustion efficiencies on an energy basis. A 

comparison of the energy equivalence for the compression-ignition (diesel) and spark-ignition 

vehicles is shown in Table 7. The shortfall in energy efficiency falls within the expected 

window for natural gas trucks.11 Additionally, for LHD and MHD vehicles, we have included 

energy efficiency information for the default spark-ignition engine for the Phase 2 GEM 

 
11 “However, current natural gas engines are 5 to 15 percent less energy efficient than diesel engines” (81 FR 
73921). “This means that you can expect a CNG vehicle will get around 15% to 20% less miles per [diesel 
gallon equivalent] vs. a comparable diesel equipped vehicle” (Seger et al. 2024). “This represents a 33% fuel 
consumption penalty for the natural gas powered tractor. … A second example from the same conference 
compares two Class 8 vocational trucks in the Kroger fleet. … The natural gas truck suffers from 17 to 20% 
higher fuel consumption” (Reinhart 2016). 

Table 7. Compression-ignition Engines Are Significantly More Efficient Than Spark-ignition 

Vehicle Type Model Year
Compression 
Ignition (CI) Fuel 
Economy 

Spark Ignition (SI) 
Fuel Economy 

SI Energy 
Efficiency Penalty  

Delivery Van 

Delivery Truck 

School Bus 

Refuse Truck 

Tractor (Drayage) 

Tractor (Regional) 

Tractor (Line-Haul) 

Transit Bus 

 

On an energy basis, the modeled spark-ignition (SI) engine-powered vehicles are between 6.4 and 33 
percent less efficient than those powered by compression-ignition (CI) engines. This gap is consistent 
with the literature. Because SI engines are not required to improve under EPA’s greenhouse gas 
emissions standards while CI engines are, the efficiency gap for the modeled vehicles grows between the 
2021 and 2027 model year. This is consistent with EPA’s greenhouse gas emissions standards for SI 
vehicles, where under Phase 2 SI requirements were 7.7-11.5 percent less stringent for SI vehicles in 
2021 compared to CI vehicles and 9.6-15.1 percent in 2027 on the regulatory test cycles.  
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modeling, which is based on the Ford Triton 6.8L V10 engine. Propane and natural gas 

versions of this engine are available today, though it has since been replaced by the 7.3L 

“Godzilla” engine (Williams 2019). Since the Triton V10 is a prior generation engine, it is not 

surprising that the turbocharged engine modeled across all SI vehicles in our analysis shows 

an increase in efficiency beyond the default SI engine EPA assumed in its Phase 2 modeling.  

For all non-diesel fuels, we use the default values in GREET for SI combustion to calculate the 

upstream emissions. Gasoline is assumed to be E10 gasoline and includes emissions related to 

ethanol; all other fuels reflect no addition of biofuels. 

Electrification Shows the Lowest Carbon Intensity of All Fuels 

In order to put our analysis into the context of the current lifecycle analysis literature, we’ve 

summarized the total carbon intensity (reflecting direct combustion emissions plus upstream 

emissions related to fuel and feedstock) in Table 8, by fuel source. Because tailpipe methane 

emissions are related to the tailpipe emissions of volatile organic compounds (VOCs), which 

are regulated under federal tailpipe regulations and are discussed in the following section, 

there is some variability across vehicle types for the fossil fuel sources, particularly natural 

gas. 

Additionally, it should be emphasized that model year is distinct from calendar year—while 

some lifecycle analyses may specify grid from a particular calendar year, this modeling effort 

looks at the lifetime-averaged usage. As described elsewhere, this means that it reflects a 

specific projected deployment of energy sources over time rather than a single mix. 

Additionally, while the hydrogen is primarily sourced from natural gas via steam-methane 

reforming (SMR), the usage of grid electricity to compress the gas is a non-negligible 

component of the upstream emissions associated with its usage, which explains the model 

year variance. Lastly, because the table represents only the carbon intensity of the fuels, 

differences in the efficiency of the powertrain are not considered; this is particularly 

important to note for the comparison of hydrogen from electrolysis and electricity. 

  



 Union of Concerned Scientists   |   18 

 

Table 8. Summary of Carbon Intensity of Different Fuels for Heavy-duty Trucks 

Fuel Type Grid Model Year 
Carbon 
Intensity 

Units 
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3 Modeling Smog-forming and 
Particulate Pollution 

Despite the advent of diesel particulate filters, particulate emissions (PM) from trucks remain 

a critical public health issue. PM is often denoted by the size of the pollutant, either PM2.5 or 

PM10, for particles less than 2.5 or 10 m in diameter, respectively. 

An additional source of particulate matter (as well as ozone) is smog. Smog is formed from the 

reaction of nitrogen oxides (NOX) or sulfur oxides (most commonly SO2) with volatile organic 

compounds (VOCs) in the presence of sunlight. All three of these pollutants can be released 

directly from combustion-powered trucks. 

All four pollutants mentioned above (PM, NOX, SO2, and VOCs) can be emitted from electric 

power plants as well as from the processes to obtain and refine fuel for both the transportation 

and power sectors. These emissions are discussed in the section on modeling of the electric 

grid. 

The modeling of these pollutants generally is discussed below. 

Emissions from Brake and Tire Wear Represent a Serious Concern 

In addition to emissions related to combustion, PM from brake and tire wear represent a 

substantial source of PM emissions from all trucks.  

There is limited available data on the tire and brake wear of electric vehicles, and what little 

study has been conducted is almost exclusively on light-duty passenger vehicles (see OECD 

2020 for a review). Electric trucks are given a 2,000-pound allowance for gross vehicle weight 

rating, meaning that loaded they could weigh as much as 2,000 pounds more than their diesel 

equivalent (23 U.S. Code § 127(s)), which would thus increase wear associated with tires. 

However, 2,000 pounds represents a small share of the total weight of a heavy-duty vehicle, 

and tire wear should be proportional to weight. Additionally, electric trucks can recoup energy 

through regenerative braking, which also has the benefit of reducing brake wear, an offsetting 

effect. These competing effects likely mitigate much of the potential difference in PM 

emissions from the two types of vehicles, and with limited data available to the contrary, this 

analysis assumes that PM emissions from brake and tire wear is assumed to be equivalent for 

all types of heavy-duty truck. 

While there is no difference in these emissions between the different types of trucks, the 

health impacts of these emissions are factored into the analysis as a share of the total health 

impacts from a given heavy-duty vehicle, regardless of the fuel. 

Emissions from Combustion Trucks Worsen Over Time 

Unlike light-duty vehicles, tailpipe emission standards have not historically been regulated at 

the vehicle level but rather the engine. This leads to standards that are based on lab tests of an 



 Union of Concerned Scientists   |   20 

engine on a dynamometer, rather than a tailpipe test. There are two such federal standards 

governing diesel vehicles considered in this study. The way in which these engine standards 

translate into real-world emissions is complicated by a number of factors, which are discussed 

below. 

Because the emissions controls may be improperly maintained outside of the warranty period, 

we use a similar process as used in the EPA MOVES3 model to account for changes in 

emissions in PM2.5 and NOX over a vehicle’s lifetime related to mal-maintenance and 

tampering. This is then used to assess an average g/mi value for the usable lifetime. In this 

analysis, the usable lifetime is defined by B10 data for Class 4-8 vehicles, defined as the point 

at which 90 percent of the fleet must be rebuilt (Lowry 2017). This is a conservative 

representation of the emissions impact of trucks, as the median engine (B50) can exceed this 

lifetime by as much as 50 percent according to that same dataset. Furthermore, it is an 

averaging process weighted towards the period under which a manufacturer is responsible for 

ensuring emissions controls are operational, though it still exceeds the full useful life and 

warranty periods of all standards considered. 

We utilized survival and mileage data from the MOVES model for each vehicle type, along 

with our assumed vehicle lifetime, to establish the expected share of lifetime mileage traveled 

by a vehicle in a given year. This was used to develop an average emissions profile over the 

lifetime of a combustion-engine vehicle (Figure 5), and to weight the electric grid utilized by 

an electric truck over its lifetime (discussed in greater detail later in the methodology).  

Current Federal Standards Hold for Model Years 2010-2026 

In 2001, EPA set emissions standards for heavy-duty trucks which were anticipated to require 

selective catalytic reduction (SCR) of engine emissions to reduce NOX and diesel particulate 

Figure 5. Lifetime emissions for a regional tractor includes tampering and degradation 

 

Average lifetime on-road emissions are determined using a weighting of annual miles traveled, 
survivability, and real-worlds emissions considering not just EPA’s on-road requirements but MOVES 
factors related to tampering and malmaintenance over the lifetime of the vehicle. The tampering and 
malmaintenance factors increase linear with miles traveled between the warranty period and the full 
useful life, as in the EPA MOVES model. 
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filters (DPFs) to reduce PM. Due to flexibilities in the final rule, these standards did not fully 

phase in until 2010. These standards require an average achieved standards of 0.20 g 

NOX/bhp-hr, as measured on the HD Federal Test Procedure (FTP) cycle, over the full useful 

lifetime mileage of the vehicle up to 435,000 miles for Class 8 trucks. 

There is a large volume of evidence that exists on the effectiveness of this rule, which shows 

that in the real-world these engines emit far more NOX than intended by the rule. This is 

primarily related to shortcomings in the in-use requirements on manufacturers. A number of 

exceptions in the in-use requirements (which fall under what is known as a “not to exceed” 

(NTE) limit) mean that diesel emissions controls on these trucks operate suboptimally in a 

wide range of behavior which are not regulated under the in-use requirements. Essentially, 

these engines perform relatively well on the narrow range tested, but extremely poorly on the 

more than 90 percent of operating conditions not covered by those test procedures. As a result, 

these trucks can emit more than 7 times the required NOX  standard under low-speed 

operation according to official data submitted by manufacturers as part of the in-use testing 

program (Badshah et al. 2019). 

To translate that data into real-world operation, we rely upon the MOVES3 emissions rates 

(US EPA 2021, which are normalized to power and binned to different speed conditions.12 This 

data was recently updated for the MOVES3 model to reflect the real-world operating 

characteristics and shortcomings based on heavy-duty in-use testing (HDIUT). To apply these 

data, the modeled truck data is normalized and binned in an analogous manner to determine 

the frequency of operating modes used to define MOVES3 emissions rates. The on-road NOX 

emissions are then converted into a g/mile. The GEM model can provide engine torque, speed, 

and power data, allowing for easy determination of operating mode for MOVES3 

categorization.  

While real-world NOX emissions fell well short of the anticipated reductions for 2010 and 

beyond, DPFs have proved more effective than originally anticipated. The MOVES3 model 

used by EPA to model real-world emissions impacts included an update to PM2.5 emissions 

rates based on the same recent heavy-duty in-use testing (HDIUT) data with which the NOX 

emissions were updated (Figure 2-26 in US EPA 2022b). This data was summarized for a 

nationally representative duty cycle for each vehicle class (Classes 2b-3, 4-5, 6-7, 8, and bus). 

As in the case of NOx, the appropriate speed bins for the duration of the duty cycle are used. 

Quantities of VOCs are determined as a share of the MOVES3 hydrocarbon (HC) emissions 

based on MOVES3 speciation data (US EPA 2022c). For diesel vehicles with aftertreatment 

systems, VOCs represent 59.83 percent of the total HC emissions. Additionally, there are direct 

methane emissions resulting from all fossil-fuel trucks, which are considered as part of the 

tailpipe greenhouse gas emissions of each truck. These represent just 38 percent of the total 

HC emissions, and generally amount to less than 1 g CO2-eq./mi.13  

 
12 See Section 2.1.1.3 in US EPA 2022b for a clearer description of the calculation of operating modes. Section 
1.8 details data-related updates to the MOVES3 model, and Sections 2.1, 3.1, and 4.1 detail the process used 
for heavy-duty diesel, gasoline, and natural gas engines, respectively. 

13 100-year global warming potential (GWP) is used throughout the analysis, with GWP values (GWP100 of 
CH4 is 29.8, and for N2O is 273) obtained from the 6th Assessment Report of the International Panel on 
Climate Change (Calvin et al. 2023). 
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While ultra-low-sulfur diesel (ULSD) fuel has substantially reduced on-road emissions of SO2, 

the direct emissions are considered as a ratio of the fuel based on the relative sulfur content. 

This analysis uses the emissions factors from GREET, which itself is based on an average in-

use percentage of 11 ppm sulfur content, by weight, consistent with EPA’s analysis of the 

ULSD requirements (US EPA 2004). 

For gasoline-fueled vehicle emissions, we similarly use MOVES emissions by operating mode, 

weighting emissions by the modeled operational data for each vehicle’s duty cycle. For 

propane-fueled vehicles, we relied upon EPA emissions certification data to assess the relative 

performance of the small number of propane engines compared to their gasoline 

counterparts—like a similar industry analysis, we found that emissions of total hydrocarbons 

(THC) and NOx were similar to gasoline engines, while PM2.5 emissions were found to be 

approximately 60 percent of gasoline particulate emissions.14 VOCs were then determined 

based on the relative share for VOC/THC for propane in MOVES. For natural gas-fueled 

vehicles, MOVES data was used to assess the emissions.  

For all combustion vehicles, lifetime emissions increases with respect to tampering and 

malmaintenance reflect the assumptions from MOVES (Figure 5). For diesel vehicles, this 

means that through the warranty period, emissions are expected to reflect “as new” and then 

increase linearly to the end of the regulatory useful life, at which point emissions flatten. For 

SI engines, MOVES uses a single annual adjustment, reflecting an increase after 5 years’ 

lifetime. 

Federal Standards for Model Years 2027+ Are More Stringent But Complex 

In December 2022, EPA finalized federal NOX standards for model years 2027 and beyond. 

Nominally, these standards lead to as much as a 90 percent reduction in NOx on the FTP test 

cycle. However, this does not translate to a 90 percent reduction in real-world emissions. 

The real-world requirements of the 2022 NOx rule reflect a completely redesigned in-use 

requirement to replace the ineffective NTE protocol. Under this new program, a truck’s duty 

cycle is divided into overlapping, 300-second bins in what is known as a “moving average 

window” (MAW) approach. Depending upon the average CO2 emissions from the engine 

within a bin, the NOX emissions are compared to a given engine requirement based on 

different lab test cycles and an in-use factor. Here CO2 is used as a surrogate for power in 

assigning the comparison, either to Bin 1 (for normalized CO2 rate less than or equal to 6 

percent), or Bin 2 (greater than 6 percent normalized CO2). 

The Bin 1 standard (10 g NOx/hr) is based on the optional Clean Idle standard, since it 

corresponds to operation comparable to idling and low-power of the low-load cycle. The Bin 2 

standard (58 mg NOx/hp-hr for LHD, 73 mg NOx/hp-hr for MHD and HHD) is based on a 

25/75 percent mixture of the LLC (50 mg NOx/hp-hr) and FTP (35 mg NOx/hp-hr) standards, 

respectively, along with a conformity factor of 1.5 and, for MHD and HHD engines an 

additional “interim” adjustment of 15 mg NOx/hp-hr. 

 
14 UCS analysis of US EPA 2024a found that for similar engines, there was statistically no significant 
difference for these pollutants, though there was a wide spread in over the different displacement engines. 
The same could not be said for particulate matter, which showed a clear reduction. This is similar to an 
industry-funded review (figure 2, Ryskamp, R. 2017).  
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On top of this, the Bin 1 and Bin 2 standards are further adjusted with respect to the work-day 

temperature of the vehicle being tested. This temperature adjustment factor enables 

manufacturers to scale the in-use requirement for each bin linearly within a given temperature 

window (41°F < T < 77°F), below which data is exempted and above which the factor is unity. 

This scalar can be as much as a 60 percent increase in emissions for MHD and HHD engines 

and as much as 76 percent for LHD engines (Table III-18, 88 FR 4349). 

In its own analysis, EPA assumed that in virtually all operating conditions, the off-cycle 

standards would represent the binding constraint on engine emissions (US EPA 2022d at p. 

238). However, in assessing the rule’s impact, the Agency assumed a more binding idling 

standard (5 g NOx/hr instead of 10 g NOx/hr), ignored the interim adjustment for MHD 

engines (15 mg NOx/hp-hr), ignored the additional allowance for measurement accuracy (5 mg 

NOx/hp-hr), and ignored the temperature adjustment altogether. This means that EPA’s own 

analysis assumes that emissions in the real-world will be much lower than what is actually 

required by the finalized standards. 

In addition to the NOx standard, PM standards were reduced and warranty and useful-life 

periods increased. For PM2.5 emissions, the standard is meant to act as a backstop—current 

vehicles meet the in-use requirements for PM2.5, and therefore it is assumed that vehicles 

meeting this standard will perform equivalently to today’s vehicles. The same assumption is 

made for HCs, for which EPA did not set an additional standard. 

As in the case of the 2010+ standards, malmaintenance and tampering were considered. 

However, because the difference between engine-out and tailpipe emissions is so much 

greater, so is the impact of any tampering. This analysis relies upon new MOVES3 factors for 

tampering developed as part of EPA’s 2027 NOX rulemaking, adjusted with respect to the 

Table 9.  Modeled Vehicles Correspond to Government Multiple Classifications 

Vehicle Type GVWR Vehicle Class Federal Highway Vehicle Class 

Delivery Van 

Delivery Truck 

School Bus 

Refuse Truck 

Tractor (Drayage) 

Tractor (Regional) 

Tractor (Line-Haul) 

Transit Bus 
 

While generally throughout this report vehicles are classified by their gross vehicle weight rating 
(GVWR) based on the maximum weight of the loaded vehicle, as per regulatory classifications, the 
Federal Highway Administration classifies its observations of truck traffic based on the number of 
axles and other design characteristics of the vehicle. This table illustrates how this analysis translated 
between the two classification schemes. 
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finalized in-use requirements. For all other pollutants, malmaintenance and tampering 

emissions are the same as MOVES3, though the phase-in reflects the increased warranty, etc. 

EPA’s Regulations Increase Allowable Emissions Based on Temperature 

To assess the average impact the temperature adjustment has on real-world NOx emissions, it 

is necessary to consider the temperature profile experienced by a truck through the workday, 

since this determines the magnitude of the additional allowance granted to manufacturers. 

Below is detailed an average temperature profile experienced by freight traffic throughout the 

United States. First, hourly traffic flow for a given truck type is assessed. Then, this hourly 

traffic volume is correlated to an experienced temperature. Finally, this data is then weighted 

by the freight volume of a given geography to provide an expected national profile for each 

truck type. This is then used to assess the magnitude of the additional allowance for different 

vehicle types. Those vehicle types (from the Federal Highway Administration, FHWA) are 

then applied to those studied in this analysis (Table 9). 

Data from the Federal Highway Administration Provides Hourly Truck Traffic Information 

It is possible to look at average truck traffic to obtain a national profile for a given vehicle  

Figure 6. Traffic Volume Data for Class 6 and Class 9 Trucks on Rural Interstates 

 

Traffic flow data is available across a broad range of trucks and road types, illustrating different hourly 
and seasonal behavior. For example, FHWA Class 6 straight trucks observe a clear workday operation 
and more peaked seasonal behavior than FHWA Class 9 tractor-trailers, which show more 
homogeneity at both the hourly and monthly level. 
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Table 10. The Federal Highway Administration (FHWA) Classifies Vehicle by Body Type 

Class Class Definition Class Includes Number of Axles 

 

The Federal Highway Administration (FHWA) uses body type to define its vehicle classes rather than 
weight. The vehicles modeled in this study generally fall into Classes 4-13. Because Classes 7-8 and 10-
13 are atypical truck configurations, they were not considered explicitly in the use of FHWA data on 
truck traffic. 

SOURCE: Hallenbeck et al. 2014 
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class. A report requested by FHWA details hourly truck traffic for different vehicle types by 

hour over the course of the day, by month compared to an annual average, and for different 

road types (Hallenbeck et al. 1997). The report identifies different usage profiles, noting 

differences in hourly travel profiles for vehicles like long-haul trucks, which include a non-

trivial amount of overnight travel, as compared to local delivery vans or buses, which operate 

on a business hours basis (Figure 6). This travel pattern data is used to create a 365-day × 24-

hour data set for each truck class defined by FWHA (Table 10), based on the traffic volumes 

for each road type (Table 11). 

Climate Data Provides a Temperature Profile for a Truck In a Given Geography 

The National Ocean and Atmospheric Administration (NOAA) has collected hourly 

temperature data from sites around the country for decades. This data has been used to 

compile “climate normal” temperature and climate information to represent the average 

weather a location would be expected to see, for comparison to current and future weather 

conditions (NOAA 2021). 

This data is available on a site-by-site basis (Palecki et al. 2021). Thus, for a given region, it is 

possible to obtain a typical temperature profile for the year. With the hourly travel data 

already collected for each truck class, it is thus possible to estimate the typical temperature 

experienced throughout the work day (Figure 7). 

 

 

Table 11. Roadways Are Classified By the Federal Highway Administration (FHWA) 

Federal Highway Road Class Roadway Description 

 

Traffic count data is available my functional road class. Hourly and monthly traffic flow data on local 
roadways was not available for this analysis but remains a small share of the total traffic flow (less 
than 14 percent in 2020; FHWA n.d.). 

SOURCE: FHWA n.d. 
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Figure 7. Climate Normal Temperature at Chicago-Midway Airport 

 

Climate normal temperature shows clear seasonal behavior over the year, but the hourly result shows 
even a wide range of temperatures over the course of a single day. This variance causes the wide band 
present in the annual data. 

SOURCE: NOAA 2021 

Combining Truck Traffic and Climate Data Yields a National Average Temperature Profile 

Because the hourly temperature data for a region can now be applied to the hourly truck 

traffic profile for each type of truck over the course of the year, the question now is how to 

consider the different geographies around the country.  

The Freight Analysis Framework (FAF) from the FHWA provides a way to weight truck traffic 

around the country (US DOT 2017). The FAF divides the country into 132 freight regions. Data 

is available on value and ton-mileage of freight by different modes between those regions, 

including via truck. Most of those regions are defined by cities, which correlates well to NOAA 

climate monitoring sites. However, for the remainder (which take the form “Rest of [State]”), a 

temperature monitoring site was identified by looking at the daily truck volume (Figure 8) and 

assigning the site with the highest volume flow not already covered by a freight area (e.g., 

“Rest of Virginia” was assigned to Roanoke, VA, because the Washington, DC; Richmond, VA; 

and Virginia Beach-Norfolk, VA metropolitan areas were already covered).  

Having correlated freight areas with temperature data, now it becomes a question on how to 

weight those different freight areas. This analysis averaged the freight ton-mileage for which a 

given site is an origin and for which the freight area is a destination. The top ten freight areas 

represent just over one-quarter of the traffic flow and are shown in Table 12, along with the 

location of their representative climate monitor and freight share. 

These regions of the country span a wide assortment of climate behavior, and (as is indicated 

in Figure 8) if anything this methodology weights typical workday operation away from the 

coldest regions of the United States, where one might expect the temperature adjustment to 

make the biggest impact given the relatively high temperature below which it affects 

manufacturers’ obligations. 

Combining this freight data with the traffic volume and NOAA temperature data allows us to 

calculate a representative national profile for any given truck type—an example of line-haul  
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Figure 8. Estimated average daily volumes for trucks on the National Highway System, 2017 

 

According to data from the Freight Analysis Framework, freight traffic volumes largely follow the 
interstate system but include heavier volumes around freight hubs including ports and multimodal/rail 
facilities, as is highlighted in Table 12. (Figure reproduced from US DOT 2018.) 

Table 12.  Modeled Vehicles Correspond to Government Multiple Classifications 

Freight Area Representative City State Share 

 

The highest average freight ton-mileage is found at ports of entry and/or through stops on freight 
corridors. 

SOURCE: US DOT 2017 
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Figure 9. Freight-weighted temperature profile for line-haul tractor-trailers (FHWA Class 9). 

 

Nearly two-thirds of freight travel occurs at a temperature under which the in-use standard is relaxed, 
and more than 17 percent of freight travel occurs at a temperature for which in-use data is exempted. 
This leads to a substantially relaxed in-use requirement for manufacturers under the federal NOx 
standards for model years 2027 and later. 

SOURCE: UCS Analysis 

tractor-trailers (FHWA Class 9) is shown in Figure 9. In this example, just over 17 percent of 

operation would be excluded from the in-use program, and just over 19 percent would be 

required to meet the in-use protocol with no temperature adjustment. This means nearly two-

thirds of the expected operation of an average truck would receive an additional adjustment 

related to temperature. 

Additional Emissions Allowances Are Allowed Under EPA’s Regulations 

Though much of the temperatures experienced by a truck are very moderate, the impact of 

this large temperature coverage leads to a rather substantial expected adjustment for trucks. 

Manufacturers submitted the data underpinning this adjustment factor, and as with any 

flexibility it should be assumed that manufacturers will take full advantage of this in designing 

and packaging emissions controls such that there will be increased emissions at different 

temperatures. Since manufacturers have flexibility on determining which vehicles are 

measured against the in-use requirements, it’s likely this adjustment factor will even be 

selected for explicitly in the design phase. 

To calculate the impact of the temperature adjustment, the temperature adjustment for the 

idle and in-use bin was applied, and temperatures below 41°F were ignored. The freight-

weighted adjusted bins are shown in Table 13. It should be noted that in-use emissions will be 

even higher due to the exempted data below 41°F, where there is absolutely no guarantee that 

emissions controls are operating effectively. 
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These adjusted off-cycle bins represent a significant increase which EPA did not consider in 

its analysis of the emissions from engines certified to the final NOX standards, with idle 

emissions in particular more than double those assumed in the regulatory impact analysis. 

While we have not attempted to convert these substantial increases into a fleet-wide estimate 

of benefits, it is clearly significant. And with manufacturers getting to preferentially select the 

trucks tested under this program, it could be manipulated even further to erode the efficacy of 

the in-use requirements. 

There is no temperature adjustment for any pollutants other than NOX. For PM2.5 and HCs, 

current vehicles already achieve the required targets, so it is assumed that vehicles meeting 

the EPA standards will achieve the levels of performance of today’s vehicles. MOVES3 data is 

then used to estimate the emissions for each vehicle category. 

Lifetime-weighted pollution rates are calculated as in the other classes, considering a 

multiplicative adjustment for effectiveness as calculated by EPA in support of the rule (US 

EPA 2022d). The malmaintenance factors were again adjusted relative to the values used in the 

rulemaking to reflect differences between the modeled and finalized standards, consistent 

with the approach taken in assessing the malmaintenance impact on the CARB standards. 

 

Table 13. Impact of EPA’s Real-world Emissions Allowances Vary by Vehicle Class 

FHWA Class 
Adjusted Bin 
1 (g NOx/ hr) 

Adjusted Bin 
2** (mg 
NOx/bhp-hr) 

Operation 
Share Not 
Tested 

Opeartion 
Share 
Adjusted 

Operation 
Share with No 
Adjustment 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
 

Compared to a nominal Bin 1 standard of 10 g/hr and a nominal Bin 2 standard of 58 mg/hp-hr, under 
EPA’s flexible real-world allowances, the typical truck could emit 14-19 percent higher emissions at 
idle and 21-30 percent additional in-use emissions. 

**Note:  The adjusted Bin 2 values do not include the 15 mg/hp-hr interim allowance for MHD and 
HHD engines nor the additional 5 mg/hp-hr allowance for measurement accuracy (40 CFR § 
1036.420), the latter of which our analysis excluded. 
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Figure 10. Lifetime Average Real-world NOX Emissions for Different Diesel Vehicles 

 

A comparison of the impacts of the federal NOX standards over time shows a substantial difference in 
emissions, with the most recent federal standards between a 73-95 percent reduction in lifetime-
average on-road NOx emissions compared to the average truck on the road today. 

SOURCE: UCS Analysis 

 

Tailpipe NOx Emissions Vary Both by Application and Regulation 

To illustrate the impact of NOX emissions standards on real-world tailpipe emissions, lifetime 

average emissions are compared across vehicle types in Figure 10 to reflect not just emissions 

when the vehicle is new but averaged over the expected lifetime to account for in-use factors, 

degradation related to expired warranty and malmaintenance, etc. As noted previously, this 

lifetime is determined by the mileage at which 90 percent of the fleet would be rebuilt. 
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4 Modeling the Future Electric Grid 

While electric trucks have zero tailpipe emissions, the electricity associated with charging the 

batteries powering electric trucks certainly has associated global warming, smog-forming, and 

particulate emissions. At the same time, these emissions have generally been declining over 

time, and this is expected to continue (Figure 4 in Reichmuth et al. 2022). Unlike a 

conventional truck, where associated emissions get worse over time through malmaintenance 

and tampering, an electric truck will be powered by an increasingly cleaner grid, which means 

decreasing emissions impacts over its lifetime. 

In order to project the lifetime-average emissions associated with an electric truck, we utilize 

two projections, one from the Energy Information Administration representing no additional 

policy changes (US EIA 2023) and one from the National Renewable Energy Lab (NREL) 

consistent with achieving net-zero grid emissions by 2035 (Standard Scenario 2023 with high 

CCS costs in Gagnon et al. 2023). These scenarios are described in greater detail below. 

As in the case of the combustion trucks (Figure 5), the lifetime average is weighted by 

expected survival rates and annual VMT by age (Figure 11). We have considered 4 different 

model years of electric truck, representing the first year of usage of the truck: 2023, 2027, 2030, 

and 2035. To simplify the number of grid scenarios modeled, the grid emissions are weighted 

by a representative fit to the VMT data to identify a typical lifetime weighting characteristic of 

all trucks broadly (solid line, Figure 11). The truck type for which the curve is least 

Figure 11. Share of Lifetime Vehicle Miles Traveled for Different Truck Types, by Age 

 

Despite having different usage, survival rates, and annual miles, the range of truck types analyzed 
largely have a similar profile when normalized to the total expected lifetime mileage of an application. 
The solid line represents the profile used to estimate the projected energy share via age for a truck.  

 



 Union of Concerned Scientists   |   33 

representative is long-haul tractors; however, the difference is not sufficient to significantly 

impact the conclusions of this analysis.15 

The Annual Energy Outlook Represents Business-As-Usual (BAU) 

The Energy Information Administration’s (EIA’s) Annual Energy Outlook (AEO) is a well-

documented benchmark for many analyses (US EIA 2023). Despite the longevity and 

widespread utilization of AEO, EIA’s own analysis shows that the AEO has historically 

underestimated the deployment of clean energy technology, overestimated the deployment of 

coal power, and overestimated the emissions associated with the electric grid (US EIA 2022a). 

Therefore, even though we have used the latest available version of AEO (US EIA 2023), which 

includes accounting for recent supportive policies including the Inflation Reduction Act and 

Infrastructure Investment and Jobs Act (also known as the bipartisan infrastructure law), this 

scenario likely represents a conservative assessment of the emissions from the future grid 

powering electric trucks.  

To assess the future emissions on an annual basis, we utilize the supplemental data tables 

corresponding to grid production for the energy market modules contained in NEMS, which 

largely correspond to the standard NERC subregions (Figure 3, US EIA 2022b). These tables 

have power generation by different sources for each subregion, over time. The mileage 

weighting is then used to calculate representative truck operation in the grid region. 

Because the NEMS energy market modules do not directly correspond to state boundaries, if 

we want to examine grid emissions at the state levels we must translate these subregional data 

to state-level date. We were not able to obtain a detailed GIS map of the energy market module 

boundaries; however, those subgrids are based on NERC data and share a strong relationship 

with EPA’s eGRID subregions, which are also based on NERC subregions (compare Figure 3, 

US EIA 2022b to EPA 2024b).16 These data are available at sufficient level of detail to allocate 

subregions at the county level.  

In order to translate these grid-level estimates to state-level estimates, we assign each county 

subdivision (identified by a 5-digit Federal Information Processing Series [FIPS]) to a subgrid 

based on the eGRID subregion map. Where a county falls into multiple subregions, we’ve 

assigned it based on the subregion associated with the maximum power production in the 

subregion according to EPA eGRID 2021. Then, the state grid is determined using county 

population data as a weight for the subgrids. 

 
15 For example, for a 2030 long-haul tractor powered by a BAU grid, utilizing the MOVES3 weighting instead 
of the representative curve results in a 3.6 percent increase in lifetime CO2 emissions, a 5.6 percent increase 
in lifetime NOx emissions, and a 4.1 percent increase in lifetime PM2.5 emissions directly from the US 
national average grid. Compared these results to a 2030 diesel-powered long-haul tractor, using the 
MOVES3 long-haul combination truck weighting would yield a reduction in lifetime well-to-wheels 
greenhouse gas emissions of 73 percent and a reduction in monetized public health impacts of 31 to 44 
percent, compared to 74 percent and 34 to 46 percent, respectively. 
16 The most notable disparity occurs in the Midcontinental ISO (MISO) region, where EIA’s MISW 
subregion contains all of Wisconsin and the upper peninsula of Michigan and nearly all of Minnesota and 
Iowa while EPA’s MROE subregion is limited to only part of Wisconsin and the upper peninsula of Michigan, 
with the western part of Wisconsin and all of Minnesota and Iowa assigned to MROW. However, the 
modeled grids for these two regions are largely in agreement, with deviations of around 10 percent, much 
more similar to each other than to the national average. 
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AEO 2023 includes the total direct emissions of CO2, NOx, and SOx from the electric grid. To 

calculate grid emissions of PM2.5 and VOCs and the emissions associated with the upstream 

extraction of the fuel, the state-averaged grid data by power source is then plugged into 

GREET 2022. While GREET is only broken into 10 electricity regions, we have used the 

appropriate region for each grid in order to best match the mix of technology used. For 

example, the efficiency and mix of natural gas technologies in the Midwest Reliability 

Organization (MRO) region is different than that of SERC, and we assume that this difference 

would persist, on average, over time.17  

Achieving Net-Zero Emissions by 2035 Is Possible with a Clean Grid 

While AEO 2023 provides a reasonable, if conservative, assessment of business as usual, EIA 

did not examine any policy cases consistent with holding the impacts of climate change to 1.5 

to 2°C. Therefore, to assess a “clean energy” scenario, we utilize analysis from the National 

Renewable Energy Laboratory (NREL), which considers a wide range of policy futures as part 

of its Cambium project. NREL utilizes a least-cost structural model to project future grid 

elements together with a tool that models hourly grid operation to assess grid characteristics 

under different future policy scenarios (Gagnon et al. 2023). 

The NREL analysis is able to generate a long-run marginal emissions rate, which is defined as 

the emissions induced or avoided by a long-term change in electricity demand, such as what 

would be induced by an increasing share of electric vehicles. While recent analysis of the long-

run marginal emissions rate shows that it can more accurately predicts emissions impacts 

related to operational responses to changes in electricity demand than either the short-run 

marginal emissions rate or the average emissions rate (Gagnon and Cole 2022), the marginal 

production by source is not provided with the Cambium model data, which means it is not 

possible to establish non-greenhouse gas long-term marginal emissions rates, either directly or 

in a comparable manner to the AEO 2023 data. Additionally, AEO 2023 provides average 

emissions data, so using average emissions rates provides a clearer “apples to apples” 

comparison between the two different futured sets of data. As a result, this analysis uses the 

average emissions rate for greenhouse gas emissions.  

There are a number of potential future grid conditions based on today’s policy landscape. UCS 

has conducted its own economywide decarbonization analysis, consistent with the science-

based position to address climate change by achieving net-zero emissions by 2050 (Clemmer et 

al. 2023). The Cambium scenario most consistent with this UCS modeling is the 2023 Standard 

Scenario with a 100 percent reduction by 2035 and assumed high costs for CCS (Gagnon et al. 

2023). For comparison, the Biden administration, which has also called for a net-zero 

emissions economy by 2050, has called for a 100-percent “carbon pollution-free” power sector 

 
17 Alternatively, it could be assumed that the more polluting grid regions may rapidly conform to cleaner 
grid regions by preferentially shifting away from the dirtiest plants, so this represents a conservative 
assumption. Adopting in each region the same average U.S. grid mix profile yields a wide range of emissions 
(values provided in g/MMBtu): compared to the U.S. average total emissions of 136,717 (GHG), 15.1 (VOC), 
98.2 (NOx), 8.1 (PM2.5), and 86.7 (SOx), the GREET regions would yield 135,110-176,159 (GHG), 13.8-24.8 
(VOC), 75.4-156.8 (NOx), 4.7-12.2 (PM2.5), and 59.0-169.1 (SOx). The average of the GREET regions has 
emissions 5.5 to 12.7 percent higher for these pollutants, and generally more regions have emissions 
performances worse than the national average, again emphasizing how this assumption errs on attributing 
greater emissions to the grid than using a constant national value. 
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by 2035 to help achieve these targets, so this is consistent with the latest presidential 

objectives, even if that has not been fully implemented yet via policy. 

Like AEO 2023, the Cambium data includes direct emissions associated with its grid: the three 

primary greenhouse gases (CO2, CH4, N2O), NOx, and SOx. To assess the remaining non-

greenhouse gas emissions (PM2.5 and VOCs), as well as the upstream impacts from the grid, we 

apply source generation from the NREL Cambium analysis to GREET in the same manner as 

above used for AEO 2023. Losses associated with transmission and distribution are included in 

this analysis, as in the case for AEO 2023. 

The Cambium data is available at the balancing area level, which is even more finely refined 

than the AEO 2023 data. These are then aggregated to generation and emissions assessment 

(GEA) regions, which largely overlap with the NERC regions. There are, however, a few 

differences. The upstate New York (NYUP) and New York City/Westchester (NYCW) 

subregions are combined into a single balancing area (p127), and the Long Island (NYLI) 

subregion is not listed as a separate GEA region but only as its own balancing area (p128). 

Other than these differences, the Cambium analysis is treated identically to the AEO 2023 data 

in this analysis. 

Generation Outside the Contiguous United States Can Be Cleaner, Too 

Both the Cambium data and AEO 2023 data is available only for the contiguous United States, 

so there is no data modeled for Alaska or Hawaii from either source. Instead, we have 

incorporated our own estimates based on available data.   

Hawaii’s Renewable Portfolio Standard Sets a Strong Path Forward 

Hawaii has a 100 percent renewable portfolio standard (RPS) for 2045, along with interim 

targets. As such, Hawaiian utilities have to report on their progress in achieving those targets 

(Katsura 2023, Rockwell 2023). In addition to these reports, the utilities include planned 

projects not yet online, including projects already approved by regulators (Hawaiian Electric 

Company 2023a, Kaua’i Island Utility Cooperative n.d.). Most of these planned projects are 

utility-scale solar, though the West Kauai Energy Project includes pumped hydropower and is 

expected to provide over 20 percent of Kauai’s power renewably in the coming years. In 

addition to the approved projects, there are additional planned “Stage 3” required renewable 

proposals that will substantially increase the renewables on the grid before 2035 beyond what 

is already confirmed over the next five years, including specifically for firm power (State of 

Hawaii PUC n.d.). These and the existing plans support the utilities’ planned shutdown of 

fossil fuel power plants, which we anticipate will continue (Hawaii Electric Company 2023b). 

Some of this firm power is driven by a significant growth in battery-energy storage systems 

(BESS), which can also increase the available capacity of existing variable renewable resources 

(GE Energy Consulting 2017). Based on the amount of BESS already planned and the modeling 

prepared for the Hawaii Natural Energy Institute, we project an increased utilization of just 

under 15 percent for resources already part of Oahu’s grid.  

The required RPS targets represent a conservative assessment of the future grid in Hawaii, 

which we utilize as the BAU case. Compared to RPS targets of 40 percent in 2030 and 70 
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percent in 2040, it’s estimated that the Hawaiian Electric Company will achieve 82 percent in 

2035 (up from 32 percent today) and the Kauai Island Utility Cooperative 93 percent in 2035 

(up from 69.5 percent today). 

The projected grid data was then applied to GREET. To calculate direct emissions from this 

grid mix, we scale back as needed eGRID2021 data to accommodate the various renewable 

projects, with an exception for the closure of Hawaii’s last coal plant in Oahu (Shao 2022). 

Unlike eGRID2021, which was the starting point for the Hawaii grid projection, consumer-

side solar was included in our assessment of the final GREET mix for both sales and 

production because it represents a substantial share of both the total generation and 

contribution towards achieving the RPS targets, and its exclusion in eGRID is based primarily 

on data collection limitations at the national level. To calculate the emissions from this grid 

mix, we use GREET, as above.  

Electricity Generation In Alaska Is Complex But Getting Cleaner 

Unlike Hawaii, Alaska does not have any RPS requirements, though Alaska has put forth an 

RPS in back-to-back legislative sessions, and recent issues with natural gas pricing and 

availability may help provide the final inertia necessary (George and Stone 2024). A recent 

study by NREL showed how to achieve an 80 percent RPS in the state’s “railbelt”, which 

represents 75 percent of the state’s electric load (Denholm et al. 2022). This essentially 

corresponds to the eGRID subregion labeled ASCC Alaska Grid (AKGD). As part of its analysis 

of the railbelt, NREL considered a number of different scenarios. Because the RPS is identical 

in all scenarios, there is little difference in greenhouse gas emissions in any of the individual 

scenarios, though the fossil source generation does differ in each scenario. Because of planned 

expansion of both wind and hydroelectric generation, our analysis uses Scenario 2 as a 

reasonable estimate of a future, cleaner railbelt grid (DeMarban 2022, Kleinschmidt Associates 

2022). In addition to the railbelt, Alaska is serviced by a large number of microgrids due to the 

state’s unique environment, size, and sparse population. Hydroelectric power currently 

provides nearly two-thirds of the generation needed in the rest of the state, though this is 

currently backed up with diesel generators in order to provide continuous power, and many 

areas are serviced solely by diesel generators. Battery backup and wind power have enabled 

some of these microgrids to substantially reduce reliance on diesel to date, and future 

renewable energy projects are planned in a number of areas to reduce the high electricity costs 

of diesel dependency (US EIA 2024). For simplicity, it was assumed that diesel fuel generation 

was replaced with renewable sources to achieve the same 80 percent RPS as AKGD, which 

leads to shares that are virtually identical to Scenario 1 in the NREL analysis for the ASCC 

Miscellaneous subregion (AKMS). 

While the analysis for Alaska is less ambitious than the Cambium policy case, it leads to 

substantial levels of greenhouse gas emissions reductions achievable in the timeframe of 

interest for this analysis of electric trucks. However, in the interim both Alaska and Hawaii are 

likely to have a considerable share of remaining diesel/oil generation. 

Electricity Production Will Increasingly Rely Upon Renewable Energy 

The national average grid generation by source is summarized for both the business-as-usual 

(AEO) and “clean” (NREL) grids in Figure 12. Consistent with UCS’s own energy modeling 

scenarios we have minimized the use of CCS, in this case by utilizing the high CCS cost from 
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the NREL Standard Scenarios (AEO 2023 does not incorporate CCS). The sources are 

categorized in the same manner as GREET. 

Figure 12. Share of National Average Electricity Generation by Source 

 

 

Both the business-as-usual (AEO, top) and “clean” (NREL, bottom) electric grids show an increasing 
share of renewable and zero-carbon energy emissions over time. That means that the greenhouse gas 
emissions per mile associated with the use of an electric vehicle purchased in a given model year (2023, 
2027, 2030, or 2035) will be reduced year-over-year. The lifetime-averaged share of generation, by 
source, is captured in the bars on the right. 

Note: Shares of generation utilizing carbon capture and sequestration (CCS) are shown as hashed lines 
in the color of the respective source. 
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5 Characterizing Public Health 
Impacts from Heavy-duty Trucks 

By shifting emissions from the on-road to electricity sector, not only do electric trucks change 

the amount of emissions of different pollutants, but they also shift the impacts of those 

emissions. For example, while 36 million people live within 3 miles of a power plant (US EPA 

2015), 72 million people are estimated to live within 200 meters of a freight route (88 FR 4324), 

a larger slice of the population despite it being a much narrower radius of proximity. However, 

in both cases, the populations are disproportionately communities of color and lower-income, 

a severe environmental justice issue. 

For the health impacts of VOCs, NOX and SO2, in particular, location can matter significantly 

because the largest impact (as measured in monetized impacts) is related to the secondary 

formation of particulate matter from these pollutants, the dependence of which is related to 

complex, spatially dependent air quality modeling. Additionally, the formation of ozone, 

which contributes to this secondary particulate formation, can also have direct health effects 

on neighboring populations. 

Because the location of the sources of pollution and the location of the affected populations 

vary so significantly between the electrical grid, freight traffic, and the upstream impacts from 

the fossil fuels used in both, this analysis attempts to consider location in its estimates of the 

health impacts from these very different emissions sources using EPA’s Co-benefits Risk 

Assessment (COBRA) tool, version 5.1 (US EPA 2024c). 

EPA’s COBRA Model Offers a Tool to Consider Both the Type of Source 
and Location of Pollution in Identifying Harm 

The COBRA tool uses a matrix to model changes in total concentration of PM2.5 and ozone (O3), 

including via secondary formation from other pollutants. The impacts from these changes are 

then determined from health impact functions taken from the literature to estimate changes in 

premature mortality, heart attacks, etc. and reflect input assumptions on population. These 

can then further be converted into a monetary value.18 The air quality analysis underpinning 

the COBRA model is solely applicable to the contiguous United States, however, so public 

health impacts from Alaska and Hawaii are excluded from this analysis. 

To reflect the difference in source of emissions, COBRA is used to determine per tonnage 

impacts for four different sector categories: 1) Highway Vehicles—Diesel—Heavy-duty, for 

direct emissions from trucks; 2) Fuel Combustion—Electric Utility, for grid emissions; 3) 

Petroleum and Related Industries—Petroleum Refineries and Related Industries, for upstream 

refinery emissions; and 4) Petroleum and Related Industries—Oil and Gas Production, to 

capture upstream emissions from fossil fuels. It should be noted that feedstock emissions from 

 
18 Consistent with the COBRA model, a low and high estimate were used for estimating PM2.5-related 
mortality, utilizing two different epidemiological studies of the impacts of PM2.5 on mortality in the United 
States (Wu et al. 2020 [low] and Pope et al. 2019 [high]). Throughout the report, the range of estimates given 
for health impacts trace back to this uncertainty. 

https://pubmed.ncbi.nlm.nih.gov/32167524/
https://pubmed.ncbi.nlm.nih.gov/31339350/
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the electric grid include coal mining, which is not captured in #4; however, natural gas plants 

remain the larger share of feedstock emissions according to GREET’s modeling, something 

that is especially true in the case of the future grid, and since this modeling exercise does not 

consider explicitly emissions from specific plants, this seems a reasonable compromise for 

simplicity. 

In all cases, these factors are aggregated at the state level. This means that impacts are 

proportional to the respective sources of such emissions in the subregion. For example, if one 

region’s freight traffic travels more distant from population centers, on average, this will be 

reflected in a reduced impact factor. Or, if a region’s emissions are dominated by a single 

power plant, that region’s grid impacts will largely reflect an impact factor in line with that 

plant’s outcomes. 

By considering upstream health impacts from diesel fuel use in this way, we may not be 

accurately reflecting the real-world market outcomes. For example, the refinery level impacts 

from reducing diesel fuel use may largely result in emissions reductions outside the subregion 

of interest. At the same time, there is regionality associated with oil and gas production and 

extraction, so reductions in fuel use and their associated production are not entirely diffuse, so 

this assumption is more reasonable than assuming a single national average impact for the 

refinery and oil and gas emissions, particularly since we are aggregating data at the state level, 

which is already substantially larger territory than point sources like refineries or even 

particularly heavily trafficked or dense subregions. 

To assess the health impacts, the changes in emissions associated with the feedstock, fuel, and 

use for different categories of truck are considered and multiplied by their respective factors 

for all pollutants (NOx, SOX, PM2.5, VOCs) to assess the relative health benefit in a given 

subregion. Our analysis assumes the default assumptions on population, incidence of 

underlying health impacts, health impact functions, and economic valuation in the COBRA 

model for a given year (see below). Additionally, we assume a 2 percent discount rate, now the 

default for COBRA and consistent with the latest A-4 Circular guidance (White House CEA 

2024).  

Health Impacts of Pollution Are Time-Dependent 

Because we are concerned with the impact of emissions from trucks over their lifetime, it is 

not just important at what levels the emissions are produced or where, but also when. As 

populations shift and grow over time, the health impacts from emissions will increase, 

affecting more people. At the same time, the baseline levels of health may change over time as 

baseline emissions levels change. 

In order to assess the health impacts for different years, EPA has made available estimates of 

population, incidence, and emissions for a range of years (US EPA 2024d). One can then 

actually calculate from these data sets the health impacts per ton of different pollutants from 

different sources over time. 

Given the long lifetime of heavy-duty trucks, which can be on the road for 30 years or more, 

pollution emitted at the earliest years of operation may have a reduced impact compared to 

later operation. At the same time, more miles are traveled in the earliest years of operation. 
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While it is technically possible to create time profiles for every type of truck for each pollutant 

in each state for each fuel source, such an endeavor is computationally prohibitive. Moreover, 

the regional variations are generally small over time, since regional disparities in population 

growth are relatively low—aggregated at the state level, population growth from 2030-2050 

varies nationwide from 0.1 to 1.4 percent, with a median growth rate of 0.6 percent and a 

national average growth rate of 0.7 percent. 

For simplification, we have considered the time dependence of emissions at the average 

national level. This may result in smoothing out some differences in state-by-state population 

and emissions shifts over time. However, those are already largely captured in the actual truck 

emissions figures, and the difference here is in the second-order effect of the impact of those 

emissions. 

To account for years in between the COBRA-modeled years of interest, we have assumed a 

constant rate of change in the intervening years. This set of pollutant- and source-specific data 

is then applied to the annual emissions from a given model year vehicle for a particular duty 

cycle and fuel source. For combustion trucks, the duty cycle is critical, since emissions over 

time will vary with annual mileage, assumed load, etc. For electric trucks, emissions are only 

associated with the grid fueling those trucks, and therefore only a single analysis for each 

pollutant is needed (see Figure 11 and surrounding discussion), for a given electric grid and 

model year. 

When considering the economic value of health impacts for a given truck, we have socially 

discounted the values to the model year in question at a 2 percent discount rate, to reflect a net 

present value for the model year in question. This ensures a fair comparison for a given model 

year between trucks but means that the economic impacts for emissions from later model year 

trucks appear greater due to increasing population over time. For our analysis, we are 

interested only in comparing truck types within the same year of operation; moreover, our 

analysis considers the question “If you were to purchase a truck in the year…”, at which point 

one would not be discounting the impacts to today but projecting them forward from Age 0, 

i.e. the model year, as we have done. Had we instead discounted to the current year, this 

would have undervalued all health impacts in future model years, misleading a reader into 

thinking that health impacts for a given tonnage for a vehicle sold in a later model year were 

less because of economic discounting. 

Sample Data for a Model Year 2027 Line-Haul Tractor Highlights the 
Benefit of Electrification 

To provide some additional supporting data for comparison to the literature, well-to-tank, 

tank-to-wheel, and well-to-wheel data on national-average greenhouse gas emissions and 

monetized health impacts are provided for a line-haul Class 8 tractor-trailer for every model 

year and fuel type considered (Table 14). Additionally, comparative maps of greenhouse gas 

emissions and health impacts are shown for a model year 2027 electric tractor-trailer fueled by 

the business-as-usual (AEO) grid, compared to a diesel tractor-trailer of the same model year 

(Figure 13). 
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Table 14. National Average Data for Line-Haul Tractors Show the Benefits of Electric Trucks 

Powertrain 

  (Grid) 
Model 

Year 

Well-to-Tank Tank-to-Wheels Total (Well-to-Wheels) 

CO2e 

/mi. 

Health Impact $ CO2e 

/mi 

Health Impact $ CO2e 

/mi 

Health Impact $ 

Low High Low High Low High 

Diesel 
2023 

2027+ 

Gasoline 
2023 

2027+ 

Natural Gas 
2023 

2027+ 

Propane 
2023 

2027+ 

Battery-Electric Vehicle 

  AEO Grid 

2023 

2027 

2030 

2035 

  NREL Grid 

2023 

2027 

2030 

2035 

Hydrogen ICE Vehicle (SMR H2 from Natural Gas) 

  AEO Grid 

2023 

2027 

2030 

2035 

  NREL Grid 

2023 

2027 

2030 

2035 

Hydrogen ICE Vehicle (Electrolytic H2 from Grid) 

  AEO Grid 

2023 

2027 

2030 

2035 

  NREL Grid 

2023 

2027 

2030 

2035 

Hydrogen Fuel-Cell Electric Vehicle (SMR H2 from Natural Gas) 

  AEO Grid 

2023 

2027 

2030 

2035 

  NREL Grid 

2023 

2027 

2030 

2035 

Hydrogen Fuel-Cell Electric Vehicle (Electrolytic H2 from Grid) 

  AEO Grid 

2023 

2027 

2030 

2035 

  NREL Grid 

2023 

2027 

2030 

2035 
 

Data on the largest trucks on the road highlights the importance of moving to a zero-emission future. 
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Figure 13. Impacts of 2027 Electric Line-Haul Tractor-Trailer Compared to Diesel Equivalent 

 

 

Even under the projected business-as-usual electric grid, a brand new model year 2027 electric line-
haul tractor-trailer will significantly reduce greenhouse gas emissions and public health impacts 
around the country compared to a MY2027 diesel tractor-trailer. 

Note: Health impacts are estimated under both low and high estimates of PM2.5 mortality, which is why 
the data is shown as a range. Hashed coloring means that the range of estimates spans multiple color 
ranges. 

SOURCE: UCS Analysis 
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